

INNOVATION IN AERIAL SURVEY DATA ACQUISITION

Aerial Survey - Vertical Imagery - Lidar - Oblique Imagery

BOOMING CITIES need acurate, high resolution, fast updated, 2D and 3D city models

IN 2012, IMAO CREATED THE FIRST 250 MPIXELS OBLIQUE AND NADIR CAMERA FOR AUTOMATIC 3D URBAN MODEL GENERATION

The 3DCAM

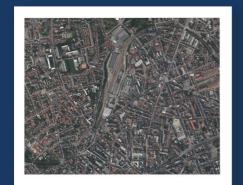
combines on the same support 4 oblique cameras and one vertical, allowing it to be used on all standard platforms on the market. 4 oblique 50 Mpx Cameras with 150 mm lens and 1 vertical camera with 100 mm lens.

and produces 20 3D models in France

1200km2 over Paris at 10cm GSD

B66, a BIG step for Aerial Photography

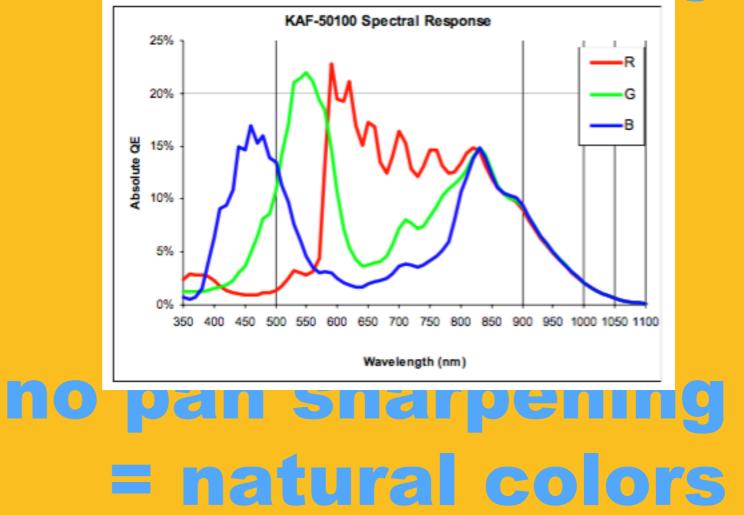
B66 the biggest photogrammetry frame camera in the world


B G image size 30000x22000 pixels B G footprint of 26km2 at 20cm GSD **B G F footprint of 7km2 at 10cm GSD BGB660** Mpixel images **BIGE 2 GB TIF files**

Comparative Base Image sizes

Other current commercial cameras

B66


30 000 X 22 000 pixels

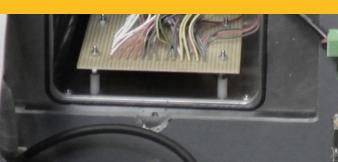
BIG Difference

Bayer Pattern technology

BLUE	GREEN1	
GREEN2	RED	

General features

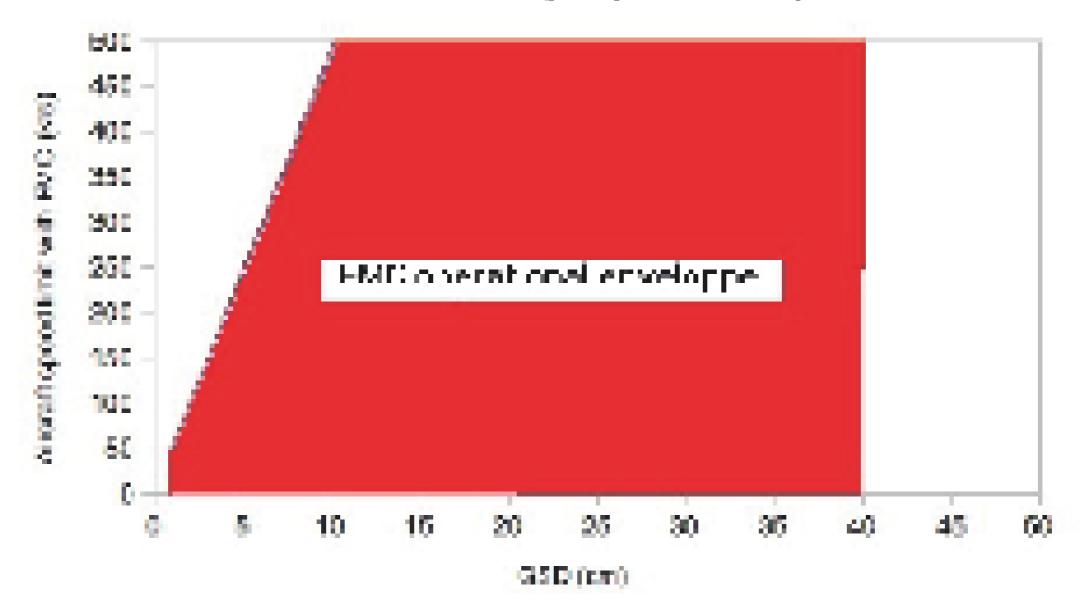
1500 pictures Flight time: 6h GSD: 15 cm Speed: 140kts


Image Size	30000 x 22000 pixels (660 Mpixels)		
Image Channels	RGB &NIR		
File Size	2 Go at 8 bits per pixel		
Pixels Size	6 microns		
Focal Length	185 mm		
Field of view across	52°		
Field of view along	40°		
Forward Movement Compensation	Mechanical with sub-micron accuracy		
Analog to Digital Conversion	8,12 or 16 bits		
CIR pan sharpening ratio	1:4		
Image number storage	1500		
Frame rate	2,55		
CCD technology	Bayer pattern		
Image reconstruction	Auto calibrated		
B/H ratio	1		
Shutter	Leaf type COPAL1 electomechanical		
Apertures	1/6 to 1/22		
Exposure speed	1/400s to 1/32s		
Physical dimension	50x60x80cm		
Weight	80kg		
Power consumption (full)	850W		
IMU integrated			

1U integrated
uitable with GNSS/INS recording
changeable shutter without recalibration
n board image preview

Si Ei

A UNIQUE architecture with state of the arts electronics



Special OPTICS DESIGN with removable shutters

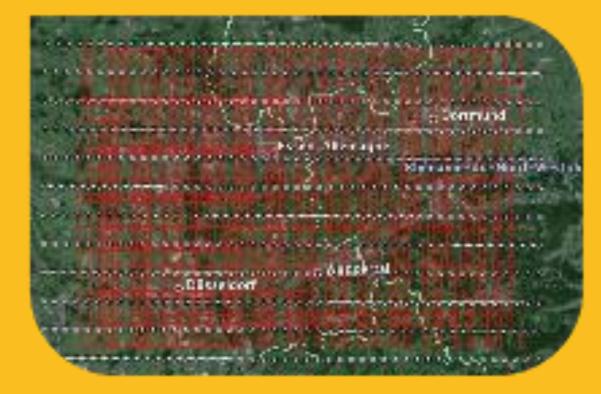
FNC Performances

Forward Movement Compensation with sub-micrometer accuracy, up to 170 pixels (1mm).

Lab and Flight CALIBRATION

3

3


1-11

BIG ADVANTAGES:

- Suitable with any mount / aerial survey aircraft
- Flight time efficiency (weather and costs)
- Flight time reduced by a factor of 1,5 to 2
- Less images decrease processing costs
- Delivers standard undistorded TIF images
- Long focal length ease overflights of majors cities and reduce lean effect

CASE STUDY

A 80x50 km - 4000km² project over Essen 20 cm GSD with 60/25 overlap

Resolution (cm)	20	10	5
Sidelap (%)	20	30	80
Forward overlap (%)	60	60	80
Aircraft speed (kts)	220	220	180
Project width (km)	100,0	50,0	10,0
Project length (km)	100,0	50,0	10,0
Project surface (km ²)	10000	2500	100
Flight height (ft)	20232	10116	5058
Flight height (m)	6167	3083	1542
Number of flight lines	21	24	31
Number of photos	1239	1416	1488
Flight time in hours	6,90	4,94	3,51
(5 mn per turn)			
Maximum lean effect (%)	41,45	36,92	12,07
Time between shots (s)	15,55	7,78	2,38

Flight log summary

Name	Value	Unit	
Num Segs	12		
Segm. length	950.400	km	
Operation time	3.135	h	
Time per turn	300.000	5	
Mean speed	231.317	kts	
Num Exposures	552		

See it BIG with B66

Thank you

visit our website: www.imao-fr.com